Amyloid fibril nucleation: effect of amino acid hydrophobicity.

نویسنده

  • Stefan Auer
چکیده

We consider the nucleation of amyloid fibrils when the process occurs by direct polymerization of fully extended peptides (i.e., β-strands) into fibrils composed of successively layered β-sheets with alternating weak and strong hydrophobic surfaces. We extend our recently developed nucleation model (Kashchiev, D.; Cabriolu, R.; Auer, S. J. Am. Chem. Soc. 2013, 135, 1531-1539) to derive general expressions for the work to form such fibrils, the fibril solubility, the nucleation work, the equilibrium concentration of nuclei, and the fibril nucleation rate as explicit functions of the supersaturation of the protein solution. Analysis of these expressions illustrates the effect of increased asymmetry between the weak and strong hydrophobic β-sheet surfaces on the thermodynamics and kinetics of the polymerization process. In particular, the application of our theoretical framework to a simple model peptide system shows that lowering the hydrophobicity of one β-sheet surface can hamper protein fibrillation because the threshold concentration below which the fibril nucleation is practically arrested, and above which the process occurs vigorously--because then each monomer in the solution acts as a fibril nucleus--is shifted to higher concentrations. This effect is entirely due to the effect of asymmetry of the two hydrophobic β-sheet surfaces on the fibril solubility. In addition, with increasing asymmetry, the nucleation rate of one fibril polymorph becomes increasingly dominant, illustrating that there is a morphological selection between the two possible polymorphs.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Characterization of the nucleation barriers for protein aggregation and amyloid formation.

Despite the complexity and the specificity of the amino acid code, a variety of peptides and proteins unrelated in sequence and function exhibit a common behavior and assemble into highly organized amyloid fibrils. The formation of such aggregates is often described by a nucleation and growth mechanism, in which the proteins involved also form intermediate oligomeric aggregates before they reor...

متن کامل

Study of Cis–trans Isomerization Mechanism of [3-(3-Aminomethyl) Phenylazo] Phenyl Acetic Acid as a Causative Role in Alzheimer Using Density Functional Theory

Amyloid-β (Aβ) self-assembly into cross-β amyloidfibrils is implicated in a causative role in Alzheimer’s disease pathology.Uncertainties persist regarding the mechanisms of amyloid self assembly and the role of metastable prefibrillar aggregates. Aβ fibrilsfeature a sheet-turn-sheet motif in the constituent β-strands; as such, turn nucleation has been proposed as a rate-limiting step in the se...

متن کامل

Study of Cis–trans Isomerization Mechanism of [3-(3-Aminomethyl) Phenylazo] Phenyl Acetic Acid as a Causative Role in Alzheimer Using Density Functional Theory

Amyloid-β (Aβ) self-assembly into cross-β amyloidfibrils is implicated in a causative role in Alzheimer’s disease pathology.Uncertainties persist regarding the mechanisms of amyloid self assembly and the role of metastable prefibrillar aggregates. Aβ fibrilsfeature a sheet-turn-sheet motif in the constituent β-strands; as such, turn nucleation has been proposed as a rate-limiting step in the se...

متن کامل

Primary Nucleation Kinetics of Short Fibril-Forming Amyloidogenic Peptides.

The primary nucleation step in amyloid fibril formation can, depending on the nature of peptide sequence, occur in one step, straight from a dilute solution, or in multiple steps, via oligomers or disordered aggregates. The precise kinetic pathways of these processes are poorly understood. Employing forward flux sampling and a midresolution coarse-grained force field, we analyzed the reactive p...

متن کامل

Probing aromatic, hydrophobic, and steric effects on the self-assembly of an amyloid-β fragment peptide.

Aromatic amino acids have been shown to promote self-assembly of amyloid peptides, although the basis for this amyloid-inducing behavior is not understood. We adopted the amyloid-β 16-22 peptide (Aβ(16-22), Ac-KLVFFAE-NH(2)) as a model to study the role of aromatic amino acids in peptide self-assembly. Aβ(16-22) contains two consecutive Phe residues (19 and 20) in which Phe 19 side chains form ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The journal of physical chemistry. B

دوره 118 20  شماره 

صفحات  -

تاریخ انتشار 2014